Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 758
Filtrar
1.
Oncol Res ; 32(4): 607-614, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38560568

RESUMO

C-mannosylation is a post-translational modification that occurs intracellularly in the endoplasmic reticulum. In humans, biosynthesis of C-mannosylation in proteins containing thrombospondin type 1 repeat is catalyzed by the DPY19 family; nonetheless, biological functions of protein C-mannosylation are not yet fully understood, especially in tumor progression. Vasculogenic mimicry (VM) is the formation of fluid-conducting channels by highly invasive and genetically deregulated tumor cells, enabling the tumors to form matrix-embedded vasculogenic structures, containing plasma and blood cells to meet the metabolic demands of rapidly growing tumors. In this study, we focused on DPY19L3, a C-mannosyltransferase, and aimed to unravel its role in VM. Knockout of DPY19L3 inhibited the formation of VM in HT1080 human fibrosarcoma cells. Re-expression of wild-type DPY19L3 recovered VM formation; however, DPY19L3 isoform2, an enzymatic activity-defect mutant, did not restore it, suggesting that the C-mannosyltransferase activity of DPY19L3 is crucial to its function. Furthermore, the knockdown of DPY19L3 in MDA-MB-231 breast cancer cells hindered its network formation ability. Altogether, our findings suggest that DPY19L3 is required for VM formation and stipulate the relevance of C-mannosylation in oncogenesis.


Assuntos
Neoplasias da Mama , Manosiltransferases , Feminino , Humanos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Manosiltransferases/genética , Manosiltransferases/metabolismo , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo
2.
J Cell Biol ; 223(4)2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38477878

RESUMO

Glycosylation is essential to facilitate cell-cell adhesion and differentiation. We determined the role of the dolichol phosphate mannosyltransferase (DPM) complex, a central regulator for glycosylation, for desmosomal adhesive function and epidermal differentiation. Deletion of the key molecule of the DPM complex, DPM1, in human keratinocytes resulted in weakened cell-cell adhesion, impaired localization of the desmosomal components desmoplakin and desmoglein-2, and led to cytoskeletal organization defects in human keratinocytes. In a 3D organotypic human epidermis model, loss of DPM1 caused impaired differentiation with abnormally increased cornification, reduced thickness of non-corneal layers, and formation of intercellular gaps in the epidermis. Using proteomic approaches, SERPINB5 was identified as a DPM1-dependent interaction partner of desmoplakin. Mechanistically, SERPINB5 reduced desmoplakin phosphorylation at serine 176, which was required for strong intercellular adhesion. These results uncover a novel role of the DPM complex in connecting desmosomal adhesion with epidermal differentiation.


Assuntos
Queratinócitos , Manosiltransferases , Proteômica , Inibidores de Serino Proteinase , Humanos , Adesão Celular , Diferenciação Celular , Desmoplaquinas , Dolicóis , Fosfatos , Inibidores de Serino Proteinase/metabolismo , Manosiltransferases/metabolismo
3.
Environ Toxicol ; 39(3): 1737-1746, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38050961

RESUMO

Breast cancer (BRCA) is the most common malignancies worldwide with increasing rate. Dolichol phosphate mannose synthase (DPMS) is a critical mannosyltransferase involved in the posttranslational modification of proteins. At present, there is limited knowledge regarding the function of DPMS in breast cancer. In this study, silica analysis in multiple datasets found that dolichyl-phosphate mannosyltransferase subunit 2 (DPM2) is an unfavorable prognostic marker, suggesting its oncogenic role. Cell counting kit-8 and apoptosis assays show that DPM2-silenced cancer cells exhibit decreased growth potential and enhanced cell death rate. Further, transwell and wound healing assays show reduced invasion and migration capabilities in DPM2 knockdown groups, xenograft nude mice model demonstrated smaller tumor volume in DPM2 silenced BC cells. Then, the underlying downstream mechanism of DPM2 in BC was predicted and analyzed, highlighting classical tumorigenic pathways like JAK/STAT signaling pathway and oxidative phosphorylation activated in the cancer group. Finally, ChIP-seq analysis, expression correlation analysis, inhibitor treatment, and dual luciferase assays show that DPM2 is transcriptionally activated by estrogen receptor1 (ESR1). The results show that high expression of DPM2 mRNA is significantly correlated with shorter overall survival (OS) and disease-free survival (DFS) in breast cancer patients, and in vitro knockdown of DPM2 can significantly inhibit the malignant phenotypes of cells, including proliferation, invasion, migration, and apoptosis. These results suggest that DPM2 may play an important role in breast cancer. Altogether, we first uncovered the tumorigenic and prognostic role of DPM2 in breast cancer, cellular assays, and bioinformatics analysis highlighted DPM2 as oncogene via inhibited cancer-related signaling pathways in breast cancer. Besides, DPM2 is transcriptionally activated by ESR1, the signaling axis of ESR1/DPM2 provides a new strategy for BC-targeted therapy.


Assuntos
Neoplasias da Mama , MicroRNAs , Succinimidas , Camundongos , Animais , Humanos , Feminino , Neoplasias da Mama/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Camundongos Nus , Prognóstico , Estrogênios/metabolismo , Oncogenes , Proliferação de Células , Linhagem Celular Tumoral , Movimento Celular/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica
4.
Glycobiology ; 33(12): 1139-1154, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37698262

RESUMO

The Protein-O-mannosyltransferase is crucial for the virulence of Mycobacterium tuberculosis, the etiological agent of tuberculosis. This enzyme, called MtPMT (Rv1002c), is responsible for the post-translational O-mannosylation of mycobacterial proteins. It catalyzes the transfer of a single mannose residue from a polyprenol phospho-mannosyl lipidic donor to the hydroxyl groups of selected Ser/Thr residues in acceptor proteins during their translocation across the membrane. Previously, we provided evidence that the loss of MtPMT activity causes the absence of mannoproteins in Mycobacterium tuberculosis, severely impacting its intracellular growth, as well as a strong attenuation of its pathogenicity in immunocompromised mice. Therefore, it is of interest to develop specific inhibitors of this enzyme to better understand mycobacterial infectious diseases. Here we report the development of a "target-based" phenotypic assay for this enzyme, assessing its O-mannosyltransferase activity in bacteria, in the non-pathogenic Mycobacterium smegmatis strain. Robustness of the quantitative contribution of this assay was evaluated by intact protein mass spectrometry, using a panel of control strains, overexpressing the MtPMT gene, carrying different key point-mutations. Then, screening of a limited library of 30 compounds rationally chosen allowed us to identify 2 compounds containing pyrrole analogous rings, as significant inhibitors of MtPMT activity, affecting neither the growth of the mycobacterium nor its secretion of mannoproteins. These molecular cores could therefore serve as scaffold for the design of new pharmaceutical agents that could improve treatment of mycobacterial diseases. We report here the implementation of a miniaturized phenotypic activity assay for a glycosyltransferase of the C superfamily.


Assuntos
Mycobacterium tuberculosis , Animais , Camundongos , Manosiltransferases/genética , Manosiltransferases/metabolismo , Glicosilação , Processamento de Proteína Pós-Traducional , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo
5.
Glycobiology ; 33(11): 911-926, 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-37565810

RESUMO

Recent research has unveiled numerous important functions of protein glycosylation in development, homeostasis, and diseases. A type of glycosylation taking the center stage is protein O-mannosylation, a posttranslational modification conserved in a wide range of organisms, from yeast to humans. In animals, protein O-mannosylation plays a crucial role in the nervous system, whereas protein O-mannosylation defects cause severe neurological abnormalities and congenital muscular dystrophies. However, the molecular and cellular mechanisms underlying protein O-mannosylation functions and biosynthesis remain not well understood. This review outlines recent studies on protein O-mannosylation while focusing on the functions in the nervous system, summarizes the current knowledge about protein O-mannosylation biosynthesis, and discusses the pathologies associated with protein O-mannosylation defects. The evolutionary perspective revealed by studies in the Drosophila model system are also highlighted. Finally, the review touches upon important knowledge gaps in the field and discusses critical questions for future research on the molecular and cellular mechanisms associated with protein O-mannosylation functions.


Assuntos
Manose , Açúcares , Animais , Humanos , Glicosilação , Açúcares/metabolismo , Manose/metabolismo , Processamento de Proteína Pós-Traducional , Drosophila/metabolismo , Saccharomyces cerevisiae/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo
6.
Proc Natl Acad Sci U S A ; 120(21): e2302584120, 2023 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186866

RESUMO

Mutations in the TMEM260 gene cause structural heart defects and renal anomalies syndrome, but the function of the encoded protein remains unknown. We previously reported wide occurrence of O-mannose glycans on extracellular immunoglobulin, plexin, transcription factor (IPT) domains found in the hepatocyte growth factor receptor (cMET), macrophage-stimulating protein receptor (RON), and plexin receptors, and further demonstrated that two known protein O-mannosylation systems orchestrated by the POMT1/2 and transmembrane and tetratricopeptide repeat-containing proteins 1-4 gene families were not required for glycosylation of these IPT domains. Here, we report that the TMEM260 gene encodes an ER-located protein O-mannosyltransferase that selectively glycosylates IPT domains. We demonstrate that disease-causing TMEM260 mutations impair O-mannosylation of IPT domains and that TMEM260 knockout in cells results in receptor maturation defects and abnormal growth of 3D cell models. Thus, our study identifies the third protein-specific O-mannosylation pathway in mammals and demonstrates that O-mannosylation of IPT domains serves critical functions during epithelial morphogenesis. Our findings add a new glycosylation pathway and gene to a growing group of congenital disorders of glycosylation.


Assuntos
Manose , Manosiltransferases , Animais , Glicosilação , Mamíferos/metabolismo , Manose/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo
7.
Sex Dev ; 17(1): 56-66, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758533

RESUMO

INTRODUCTION: Cryptorchidism is a hereditary anomaly characterized by the incomplete descent of one or both testicles to the scrotum. One of the challenges of this anomaly is that the retained testicle maintains its endocrine function. As a consequence, cryptorchid animals produce hormone-tainted meat in comparison to castrated animals and are likely to be more aggressive. Cryptorchidism can lead to reduced animal welfare outcomes and cause economic losses. Identifying genetic markers for cryptorchidism is an essential step toward mitigating these negative outcomes and may facilitate genome manipulation to reduce the occurrence of cryptorchidism. Attempts to identify such markers have used genome-wide association studies. Using whole-exome sequencing, we aimed to identify single nucleotide polymorphisms (SNPs) in the coding regions of cryptorchid pigs and to characterize functional pathways concerning these SNPs. METHODS: DNA was extracted and sequenced from 5 healthy and 5 cryptorchid animals from the Landrace breed, using the Illumina HiSeq 2500 platform. Data were pre-processed using the SeqyClean tool and further mapped against the swine reference genome (Sus scrofa 11.1) using BWA software. GATK was used to identify polymorphisms (SNPs and InDels), which were annotated using the VEP tool. Network prediction and gene ontology enrichment analysis were conducted using the Cytoscape platform, and STRING software was used for visualization. RESULTS: A total of 63 SNPs were identified across the genes PIGB, CCPG1, COMMD9, LDLRAD3, TRIM44, MYLPF, SEPTIN, ZNF48, TIA1, FAIM2, KRT18, FBP1, FBP2, CTSL, DAPK1, DHX8, GPR179, DEPDC1B, ENSSSCG00000049573, ENSSSCG00000016384, ENSSSCG00000022657, ENSSSCG00000038825, and ENSSSCG00000001229. Using pathway enrichment analyses and network prospection, we have identified the following significant adjusted p value threshold of 0.001 involved with the biological function pathways of estrogen signaling, cytoskeleton organization, and the pentose phosphate pathway. CONCLUSION: Our data suggest the involvement of new SNPs and genes in developing cryptorchidism in pigs. However, further studies are needed to validate our results in a larger cohort population. Variations in the GPR179 gene, with implications at the protein level, may be associated with the appearance of this anomaly in the swine. Finally, we are showing that the estrogen signaling pathway may be involved in the pathophysiological mechanisms of this congenital anomaly as previously reported in GWAS.


Assuntos
Criptorquidismo , Masculino , Humanos , Animais , Criptorquidismo/genética , Criptorquidismo/veterinária , Estudo de Associação Genômica Ampla , Sequenciamento do Exoma , Transdução de Sinais , Polimorfismo de Nucleotídeo Único/genética , Manosiltransferases/genética , Manosiltransferases/metabolismo , Proteínas com Motivo Tripartido/genética , Proteínas com Motivo Tripartido/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo , RNA Helicases DEAD-box/metabolismo , Proteínas Ativadoras de GTPase/genética
8.
Sci Rep ; 13(1): 1175, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36670130

RESUMO

Cryptococcus neoformans is an opportunistic human fungal pathogen causing lethal meningoencephalitis. It has several cell wall mannoproteins (MPs) identified as immunoreactive antigens. To investigate the structure and function of N-glycans assembled on cryptococcal cell wall MPs in host cell interactions, we purified MP98 (Cda2) and MP84 (Cda3) expressed in wild-type (WT) and N-glycosylation-defective alg3 mutant (alg3Δ) strains. HPLC and MALDI-TOF analysis of the MP proteins from the WT revealed protein-specific glycan structures with different extents of hypermannosylation and xylose/xylose phosphate addition. In alg3Δ, MP98 and MP84 had truncated core N-glycans, containing mostly five and seven mannoses (M5 and M7 forms), respectively. In vitro adhesion and uptake assays indicated that the altered core N-glycans did not affect adhesion affinities to host cells although the capacity to induce the immune response of bone-marrow derived dendritic cells (BMDCs) decreased. Intriguingly, the removal of all N-glycosylation sites on MP84 increased adhesion to host cells and enhanced the induction of cytokine secretion from BMDCs compared with that on MP84 carrying WT N-glycans. Therefore, the structure-dependent effects of N-glycans suggested their complex roles in modulating the interaction of MPs with host cells to avoid nonspecific adherence to host cells and host immune response hyperactivation.


Assuntos
Criptococose , Cryptococcus neoformans , Humanos , Cryptococcus neoformans/metabolismo , Xilose/metabolismo , Criptococose/microbiologia , Polissacarídeos/metabolismo , Manosiltransferases/metabolismo
9.
Nat Chem Biol ; 19(5): 575-584, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36604564

RESUMO

C-linked glycosylation is essential for the trafficking, folding and function of secretory and transmembrane proteins involved in cellular communication processes. The tryptophan C-mannosyltransferase (CMT) enzymes that install the modification attach a mannose to the first tryptophan of WxxW/C sequons in nascent polypeptide chains by an unknown mechanism. Here, we report cryogenic-electron microscopy structures of Caenorhabditis elegans CMT in four key states: apo, acceptor peptide-bound, donor-substrate analog-bound and as a trapped ternary complex with both peptide and a donor-substrate mimic bound. The structures indicate how the C-mannosylation sequon is recognized by this CMT and its paralogs, and how sequon binding triggers conformational activation of the donor substrate: a process relevant to all glycosyltransferase C superfamily enzymes. Our structural data further indicate that the CMTs adopt an unprecedented electrophilic aromatic substitution mechanism to enable the C-glycosylation of proteins. These results afford opportunities for understanding human disease and therapeutic targeting of specific CMT paralogs.


Assuntos
Manosiltransferases , Triptofano , Humanos , Manosiltransferases/genética , Manosiltransferases/química , Manosiltransferases/metabolismo , Triptofano/metabolismo , Glicosilação , Peptídeos/metabolismo , Proteínas de Membrana/metabolismo
10.
J Biol Chem ; 299(3): 102890, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634851

RESUMO

Mutations in protein O-mannosyltransferases (POMTs) result in severe brain defects and congenital muscular dystrophies characterized by abnormal glycosylation of α-dystroglycan (α-Dg). However, neurological phenotypes of POMT mutants are not well understood, and the functional substrates of POMTs other than α-Dg remain unknown. Using a Drosophila model, here we reveal that Dg alone cannot account for the phenotypes of POMT mutants, and identify Protein tyrosine phosphatase 69D (PTP69D) as a gene interacting with POMTs in producing the abdomen rotation phenotype. Using RNAi-mediated knockdown, mutant alleles, and a dominant-negative form of PTP69D, we reveal that PTP69D is required for the wiring of larval sensory axons. We also found that PTP69D and POMT genes interact in this process, and that their interactions lead to complex synergistic or antagonistic effects on axon wiring phenotypes, depending on the mode of genetic manipulation. Using glycoproteomic approaches, we further characterized the glycosylation of the PTP69D transgenic construct expressed in genetic strains with different levels of POMT activity. We found that the PTP69D construct carries many O-linked mannose modifications when expressed in Drosophila with wild-type or ectopically upregulated expression of POMTs. These modifications were absent in POMT mutants, suggesting that PTP69D is a substrate of POMT-mediated O-mannosylation. Taken together, our results indicate that PTP69D is a novel functional substrate of POMTs that is required for axon connectivity. This mechanism of POMT-mediated regulation of receptor-type protein tyrosine phosphatase functions could potentially be conserved in mammals and may shed new light on the etiology of neurological defects in muscular dystrophies.


Assuntos
Axônios , Drosophila , Manosiltransferases , Proteínas Tirosina Fosfatases , Animais , Axônios/metabolismo , Drosophila/enzimologia , Drosophila/metabolismo , Proteínas de Drosophila/genética , Distroglicanas/genética , Distroglicanas/metabolismo , Mamíferos/metabolismo , Manosiltransferases/metabolismo , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Tirosina Fosfatases Semelhantes a Receptores/genética
11.
mSphere ; 7(6): e0048422, 2022 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-36445154

RESUMO

Fungal-type galactomannan, a cell wall component of Aspergillus fumigatus, is composed of α-(1→2)-/α-(1→6)-linked mannan and ß-(1→5)-/ß-(1→6)-linked galactofuran side chains. Recently, CmsA and CmsB were identified as the α-(1→2)-mannosyltransferases involved in the biosynthesis of the α-core-mannan. However, the α-(1→6)-mannosyltransferase involved in the biosynthesis of the α-core-mannan has not been identified yet. In this study, we analyzed 9 putative α-(1→6)-mannosyltransferase gene disruption strains of A. fumigatus. The ΔanpA strain resulted in decreased mycelial elongation and reduced conidia formation. Proton nuclear magnetic resonance analysis revealed that the ΔanpA strain failed to produce the α-core-mannan of fungal-type galactomannan. We also found that recombinant AnpA exhibited much stronger α-(1→6)-mannosyltransferase activity toward α-(1→2)-mannobiose than α-(1→6)-mannobiose in vitro. Molecular simulations corroborated the fact that AnpA has a structure that can recognize the donor and acceptor substrates suitable for α-(1→6)-mannoside bond formation and that its catalytic activity would be specific for the elongation of the α-core-mannan structure in vivo. The identified AnpA is similar to Anp1p, which is involved in the elongation of the N-glycan outer chain in budding yeast, but the building sugar chain structure is different. The difference was attributed to the difference in substrate recognition of AnpA, which was clarified by simulations based on protein conformation. Thus, even proteins that seem to be functionally identical due to amino acid sequence similarity may be glycosyltransferase enzymes that make different glycans upon detailed analysis. This study describes an example of such a case. IMPORTANCE Fungal-type galactomannan is a polysaccharide incorporated into the cell wall of filamentous fungi belonging to the subphylum Pezizomycotina. Biosynthetic enzymes of fungal-type galactomannan are potential targets for antifungal drugs and agrochemicals. In this study, we identified an α-(1→6)-mannosyltransferase responsible for the biosynthesis of the α-core-mannan of fungal-type galactomannan, which has not been known for a long time. The findings of this study shed light on processes that shape this cellular structure while identifying a key enzyme essential for the biosynthesis of fungal-type galactomannan.


Assuntos
Aspergillus fumigatus , Mananas , Aspergillus fumigatus/metabolismo , Mananas/química , Proteínas Fúngicas/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo
12.
mBio ; 13(6): e0211222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36409123

RESUMO

The human-pathogenic yeast Cryptococcus neoformans assembles two types of O-linked glycans on its proteins. In this study, we identified and functionally characterized the C. neoformans CAP6 gene, encoding an α1,3-mannosyltransferase responsible for the second mannose addition to minor O-glycans containing xylose in the Golgi apparatus. Two cell surface sensor proteins, Wml1 (WSC/Mid2-like) and Wml2, were found to be independent substrates of Cap6-mediated minor or Ktr3-mediated major O-mannosylation, respectively. The double deletion of KTR3 and CAP6 (ktr3Δ cap6Δ) completely blocked the mannose addition at the second position of O-glycans, resulting in the accumulation of proteins with O-glycans carrying only a single mannose. Tunicamycin (TM)-induced phosphorylation of the Mpk1 mitogen-activated protein kinase (MAPK) was greatly decreased in both ktr3Δ cap6Δ and wml1Δ wml2Δ strains. Transcriptome profiling of the ktr3Δ cap6Δ strain upon TM treatment revealed decreased expression of genes involved in the Mpk1-dependent cell wall integrity (CWI) pathway. Consistent with its defective growth under several stress conditions, the ktr3Δ cap6Δ strain was avirulent in a mouse model of cryptococcosis. Associated with this virulence defect, the ktr3Δ cap6Δ strain showed decreased adhesion to lung epithelial cells, decreased proliferation within macrophages, and reduced transcytosis of the blood-brain barrier (BBB). Notably, the ktr3Δ cap6Δ strain showed reduced induction of the host immune response and defective trafficking of ergosterol, an immunoreactive fungal molecule. In conclusion, O-glycan extension in the Golgi apparatus plays critical roles in various pathobiological processes, such as CWI signaling and stress resistance and interaction with host cells in C. neoformans. IMPORTANCE Cryptococcus neoformans assembles two types of O-linked glycans on its surface proteins, the more abundant major O-glycans that do not contain xylose residues and minor O-glycans containing xylose. Here, we demonstrate the role of the Cap6 α1,3-mannosyltransferase in the synthesis of minor O-glycans. Previously proposed to be involved in capsule biosynthesis, Cap6 works with the related Ktr3 α1,2-mannosyltransferase to synthesize O-glycans on their target proteins. We also identified two novel C. neoformans stress sensors that require Ktr3- and Cap6-mediated posttranslational modification for full function. Accordingly, the ktr3Δ cap6Δ double O-glycan mutant strain displays defects in stress signaling pathways, CWI, and ergosterol trafficking. Furthermore, the ktr3Δ cap6Δ strain is completely avirulent in a mouse infection model. Together, these results demonstrate critical roles for O-glycosylation in fungal pathogenesis. As there are no human homologs for Cap6 or Ktr3, these fungus-specific mannosyltransferases are novel targets for antifungal therapy.


Assuntos
Criptococose , Cryptococcus neoformans , Animais , Camundongos , Humanos , Cryptococcus neoformans/genética , Glicosilação , Manosiltransferases/metabolismo , Xilose/metabolismo , Manose , Criptococose/microbiologia , Polissacarídeos/metabolismo , Parede Celular/metabolismo , Complexo de Golgi/metabolismo , Proteínas Fúngicas/genética
13.
Cells ; 11(19)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36231102

RESUMO

Peritoneal metastasis is the main cause of poor prognoses and high mortality in ovarian cancer patients. Abnormal protein glycosylation modification is associated with cancer malignancy. Elevated α1,3-mannosyltransferase 3 (ALG3), which catalyzes the α1,3-mannosylation of glycoproteins, has been found in some malignant tumors. However, the pathological significance of ALG3 and its regulatory mechanism in ovarian cancer metastasis is unclear. The results showed that the level of ALG3/α1,3-mannosylation was higher in human ovarian cancer tissues compared with normal ovarian tissues, as measured by Lectin chip, Western blot and Lectin blot analyses, as well as ovarian tissue microarray analysis. ALG3 was also correlated with the poor prognosis of ovarian cancer patients, according to survival analysis. The downregulation of ALG3 decreased the proliferation, stemness and peritoneal metastasis of ovarian cancer cells. The increase in urokinase plasminogen activator receptor (uPAR) α1,3-mannosylation catalyzed by ALG3 enhanced urokinase plasminogen activator (uPA)/uPAR activation and the interaction of uPAR with a disintegrin and metalloproteinase 8 (ADAM8), which promoted ovarian cancer peritoneal metastasis via the ADAM8/Ras/ERK pathway. Furthermore, decreased ALG3 suppressed ascites formation and the peritoneal metastasis of ovarian cancer cells in mice. This study highlights ALG3 as a potential diagnostic biomarker and prospective therapeutic target for ovarian cancer.


Assuntos
Neoplasias Ovarianas , Neoplasias Peritoneais , Proteínas ADAM/metabolismo , Animais , Antígenos CD , Biomarcadores/metabolismo , Carcinoma Epitelial do Ovário , Desintegrinas/metabolismo , Feminino , Glicosilação , Humanos , Lectinas/metabolismo , Manosiltransferases/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Neoplasias Ovarianas/patologia , Receptores de Ativador de Plasminogênio Tipo Uroquinase/metabolismo , Ativador de Plasminogênio Tipo Uroquinase/metabolismo
14.
Expert Rev Hematol ; 15(12): 1073-1083, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35980117

RESUMO

BACKGROUND: Circular RNA (circRNA) regulates the pathogenesis of acute myeloid leukemia (AML). However, the mechanism of circRNA protein tyrosine kinase 2 (circPTK2) in AML remains unclear. METHODS: Quantitative real-time polymerase chain reaction (qRT-PCR) assay was adopted for circPTK2, miR-582-3p and alpha-1,3-mannosyltransferase (ALG3) mRNA levels. 3-(4, 5-Dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and 5'-ethynyl-2'-deoxyuridine (EdU) assay were conducted for cell proliferation. Flow cytometry analysis was employed for cell apoptosis and cell cycle process. The glycolysis level was estimated by specific commercial kits. Western blot assay was utilized for protein levels. Dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay were performed to verify the interaction between miR-582-3p and circPTK2 or ALG3. RESULTS: CircPTK2 level was enhanced in AML peripheral blood samples and cells. CircPTK2 knockdown restrained AML cell proliferation and glycolysis and promoted cell apoptosis and cell cycle arrest. Mechanically, circPTK2 functioned as the sponge for miR-582-3p to positively ALG3 expression in AML cells. Moreover, miR-582-3p inhibition ameliorated the impacts of circPTK2 knockdown on AML cell processes. MiR-582-3p overexpression regulated cell phenotypes by targeting ALG3. CONCLUSION: CircPTK2 contributed to AML cell malignant behaviors by modulation of miR-582-3p/ALG3 axis, which might provide a potential target for AML therapy.


Assuntos
Leucemia Mieloide Aguda , MicroRNAs , Humanos , RNA Circular/genética , Sobrevivência Celular/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Apoptose/genética , Leucemia Mieloide Aguda/metabolismo , Proliferação de Células/genética , Ciclo Celular , Glicólise , Manosiltransferases/metabolismo
15.
Glycobiology ; 32(12): 1137-1152, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-35871410

RESUMO

The fungal cell wall is necessary for survival as it serves a barrier for physical protection. Therefore, glycosyltransferases responsible for the synthesis of cell wall polysaccharides may be suitable targets for drug development. Mannose is a monosaccharide that is commonly found in sugar chains in the walls of fungi. Mannose residues are present in fungal-type galactomannan, O-glycans, N-glycans, glycosylphosphatidylinositol anchors, and glycosyl inositol phosphorylceramides in Aspergillus fumigatus. Three genes that are homologous to α-(1 â†’ 2)-mannosyltransferase genes and belong to the glycosyltransferase family 15 were found in the A. fumigatus strain, Af293/A1163, genome: cmsA/ktr4, cmsB/ktr7, and mnt1. It is reported that the mutant ∆mnt1 strain exhibited a wide range of properties that included high temperature and drug sensitivity, reduced conidia formation, leakage at the hyphal tips, and attenuation of virulence. However, it is unclear whether Mnt1 is a bona fide α-(1 â†’ 2)-mannosyltransferase and which mannose residues are synthesized by Mnt1 in vivo. In this study, we elucidated the structure of the Mnt1 reaction product, the structure of O-glycan in the Δmnt1 strain. In addition, the length of N-glycans attached to invertase was evaluated in the Δmnt1 strain. The results indicated that Mnt1 functioned as an α-(1 â†’ 2)-mannosyltransferase involved in the elongation of N-glycans and synthesis of the second mannose residue of O-glycans. The widespread abnormal phenotype caused by the disruption of the mnt1 gene is the combined result of the loss of mannose residues from O-glycans and N-glycans. We also clarified the enzymatic properties and substrate specificity of Mnt1 based on its predicted protein structure.


Assuntos
Aspergillus fumigatus , Manosiltransferases , Manosiltransferases/genética , Manosiltransferases/metabolismo , Aspergillus fumigatus/genética , Manose/química , Polissacarídeos/genética , Polissacarídeos/metabolismo , Parede Celular/genética , Parede Celular/metabolismo , Glicosiltransferases/metabolismo
16.
Cell Mol Life Sci ; 79(7): 352, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676564

RESUMO

Immune checkpoint blockade therapy has drastically improved the prognosis of certain advanced-stage cancers. However, low response rates and immune-related adverse events remain important limitations. Here, we report that inhibiting ALG3, an a-1,3-mannosyltransferase involved in protein glycosylation in the endoplasmic reticulum (ER), can boost the response of tumors to immune checkpoint blockade therapy. Deleting N-linked glycosylation gene ALG3 in mouse cancer cells substantially attenuates their growth in mice in a manner depending on cytotoxic T cells. Furthermore, ALG3 inhibition or N-linked glycosylation inhibitor tunicamycin treatment synergizes with anti-PD1 therapy in suppressing tumor growth in mouse models of cancer. Mechanistically, we found that inhibiting ALG3 induced deficiencies of post-translational N-linked glycosylation modification and led to excessive lipid accumulation through sterol-regulated element-binding protein (SREBP1)-dependent lipogenesis in cancer cells. N-linked glycosylation deficiency-mediated lipid hyperperoxidation induced immunogenic ferroptosis of cancer cells and promoted a pro-inflammatory microenvironment, which boosted anti-tumor immune responses. In human subjects with cancer, elevated levels of ALG3 expression in tumor tissues are associated with poor patient survival. Taken together, we reveal an unappreciated role of ALG3 in regulating tumor immunogenicity and propose a potential therapeutic strategy for enhancing cancer immunotherapy.


Assuntos
Ferroptose , Manosiltransferases , Neoplasias , Animais , Humanos , Inibidores de Checkpoint Imunológico , Imunoterapia , Lipídeos , Manosiltransferases/genética , Manosiltransferases/metabolismo , Camundongos , Neoplasias/terapia
17.
Glycobiology ; 32(9): 814-824, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35713520

RESUMO

The human pathogenic fungus Aspergillus fumigatus synthesizes the zwitterionic glycolipid Manα1,3Manα1,6GlcNα1,2IPC, named Af3c. Similar glycosphingolipids having a glucosamine (GlcN) linked in α1,2 to inositolphosphoceramide (IPC) as core structure have only been described in a few pathogenic fungi. Here, we describe an A. fumigatus cluster of 5 genes (AFUA_8G02040 to AFUA_8G02090) encoding proteins required for the glycan part of the glycosphingolipid Af3c. Besides the already characterized UDP-GlcNAc:IPC α1,2-N-acetylglucosaminyltransferase (GntA), the cluster encodes a putative UDP-GlcNAc transporter (NstA), a GlcNAc de-N-acetylase (GdaA), and 2 mannosyltransferases (OchC and ClpC). The function of these proteins was inferred from analysis of the glycolipids extracted from A. fumigatus strains deficient in one of the genes. Moreover, successive introduction of the genes encoding GntA, GdaA, OchC, and ClpC in the yeast Saccharomyces cerevisiae enabled the reconstitution of the Af3c biosynthetic pathway. Absence of Af3c slightly reduced the virulence of A. fumigatus in a Galleria mellonella infection model.


Assuntos
Aspergillus fumigatus , Manosiltransferases , Aspergillus fumigatus/genética , Glicoesfingolipídeos/metabolismo , Humanos , Manosiltransferases/metabolismo , Família Multigênica , Saccharomyces cerevisiae/metabolismo
18.
Glycobiology ; 32(9): 778-790, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35713525

RESUMO

Mannosyl phosphorylceramide (MIPC) is a membrane lipid classified as a complex sphingolipid in Saccharomyces cerevisiae. MIPC is synthesized by 2 redundant enzymes, Sur1/Csg1 and Csh1, in the Golgi lumen. MIPC consists of 5 subtypes (A, B', B, C, and D-type) according to the position and number of hydroxyl groups on the ceramide moiety. Sur1 exerts higher impact on synthesis of MIPC-B and MIPC-C than Csh1. In this study, we elucidated the roles played by N-glycans attached to Sur1 and Csh1, and dissected the mechanisms underlying substrate recognition by these 2 enzymes. Sur1 carries an N-glycan on Asn-224, whereas Csh1 has N-glycans on Asn-51 and Asn-247. Although intracellular proteins usually harbor core-type N-glycans, the N-glycan on Asn-51 of Csh1 exhibited a unique mannan-like structure containing a long backbone of mannose. Sur1 N224Q and Csh1 N51Q mutants exhibited a decrease in the activity to synthesize specific MIPC subtypes for each enzyme, suggesting that these N-glycans play a role in substrate recognition through their catalytic domains. Moreover, ectopic insertion of an N-glycosylation consensus sequence (NST) at codon 51 of Sur1 (Sur1-NST51) resulted in an artificial modification with mannan, which markedly decreased protein stability. Our results suggest that the diminished stability of the Sur1-NST51 mutant protein could be attributable to potential structural alterations by the mannan. Collectively, the present study reveals essential luminal domains of Sur1 and Csh1 that dictate substrate specificity and/or the protein stabilities via mannan modification.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Carbamatos , Glicosiltransferases/metabolismo , Mananas/metabolismo , Manosiltransferases/metabolismo , Proteínas de Membrana/química , Mutação , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
Dev Biol ; 486: 96-108, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35367457

RESUMO

Skin epidermis secretes apical extracellular matrix (aECM) as a protective barrier from the external environment. The aECM is highly dynamic and constantly undergoes remodeling during animal development. How aECM dynamics is temporally regulated during development, and whether and how its mis-regulation may impact epidermal cell morphology or function remains to be fully elucidated. Here, we report that the conserved Zn-finger transcription factor BLMP-1/Blimp1, which regulates epidermal development in C. elegans, controls apical cell shape of the epidermis by downregulation of aECM remodeling. Loss of blmp-1 causes upregulation of genes essential for molting, including bus-8 and mlt-8, in adult, leading to an abnormal shape in the apical region of adult epidermal cells. The apical epidermal morphological defect is suppressed by reduction of bus-8 or mlt-8. BUS-8 is a key mannosyltransferase, which functions in glycosylation of N-linked glycoproteins; MLT-8 has a ganglioside GM2 lipid-binding domain and is implicated in signaling during molting, a process where the old cuticle is shed and synthesized anew. Overexpression of bus-8 or mlt-8 induces an apical epidermal cell defect as observed in blmp-1 mutants. MLT-8::GFP fusion protein is localized to lysosomes and secreted to aECM. BUS-8 is important for MLT-8 stability and lysosomal targeting, which may be regulated by BUS-8-mediated glycosylation of MLT-8 and function as a molting signaling cue in aECM remodeling. We propose that BLMP-1 represses MLT-8 expression and glycosylation in the epidermis to prevent inappropriate aECM remodeling, which is essential for maintenance of apical epidermal cell morphology during larva-to-adult transition.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Células Epidérmicas/metabolismo , Epiderme/metabolismo , Manosiltransferases/metabolismo , Muda/genética
20.
Genetics ; 221(1)2022 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-35333306

RESUMO

Candida albicans cell wall glycoproteins, and in particular their mannose-rich glycans, are important for maintaining cellular integrity as well as host recognition, adhesion, and immunomodulation. The asparagine (N)-linked mannose outer chain of these glycoproteins is produced by Golgi mannosyltransferases (MTases). The outer chain is composed of a linear backbone of ∼50 α1,6-linked mannoses, which acts as a scaffold for addition of ∼150 or more mannoses in other linkages. Here, we describe the characterization of C. albicans OCH1, MNN9, VAN1, ANP1, MNN10, and MNN11, which encode the conserved Golgi MTases that sequentially catalyze the α1,6 mannose outer chain backbone. Candida albicans och1Δ/Δ, mnn9Δ/Δ, and van1Δ/Δ mutants block the earliest steps of backbone synthesis and like their Saccharomyces cerevisiae counterparts, have severe cell wall and growth phenotypes. Unexpectedly, and in stark contrast to S. cerevisiae, loss of Anp1, Mnn10, or Mnn11, which together synthesize most of the backbone, have no obvious deleterious phenotypes. These mutants were unaffected in cell morphology, growth, drug sensitivities, hyphal formation, and macrophage recognition. Analyses of secreted glycosylation reporters demonstrated that anp1Δ/Δ, mnn10Δ/Δ, and mnn11Δ/Δ strains accumulate glycoproteins with severely truncated N-glycan chains. This hypo-mannosylation did not elicit increased chitin deposition in the cell wall, which in other yeast and fungi is a key compensatory response to cell wall integrity breaches. Thus, C. albicans has evolved an alternate mechanism to adapt to cell wall weakness when N-linked mannan levels are reduced.


Assuntos
Candida albicans , Parede Celular , Manosiltransferases , Proteínas de Membrana , Proteínas de Saccharomyces cerevisiae , Candida albicans/citologia , Candida albicans/genética , Candida albicans/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Manose/metabolismo , Manosiltransferases/genética , Manosiltransferases/metabolismo , Glicoproteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Polissacarídeos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...